Matematika

Pertanyaan

3 log (x^2 + 1) . 5 log 3 = 5 log (x+21) apabila x = ...
A. 3
B. 4
C. 5
D. -5 atau 4
E. -4 atau 5

Note
= letak 3 diatas log (x^2 +1)
= letak 5 diatas log 3
= letak 5 diatas log (x+21)

1 Jawaban

  • Mata Pelajaran : Matematika Peminatan
    Kelas : 10
    Bab : 02 - Fungsi Logaritma



    [tex] {}^{3} log(x {}^{2} + 1 ) \times {}^{5} log(3) = {}^{5} log(x + 21) \\ \frac{ {}^{5} log(x {}^{2} + 1) }{ {}^{5} log(3) } \times {}^{5} log(3) = {}^{5} log(x + 21) \\ {}^{5} log(x {}^{2} + 1 ) = {}^{5} log(x + 21) \\ x {}^{2} + 1 = x + 21 \\ x {}^{2} + 1 - x - 21 = 0 \\ x {}^{2} - x - 20 = 0 \\ [/tex]

    (x - 5) , (x + 4)
    → x = 5
    → x = -4

    Jawaban : E

Pertanyaan Lainnya